Static Coil Design Considerations for the Magnetic Resonance Imaging

Authors

  • A. Shiravi Department of Radiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • B. Ganji Department of Electrical & Computer Engineering, University of Kashan, Kashan, Iran
  • M. Shiravi Department of Electrical & Computer Engineering, University of Kashan, Kashan, Iran
Abstract:

One of the main challenges in developing magnetic resonance imaging (MRI) systems is to create a static coil that needs to generate magnetic field density along with the characteristics of optimal homogeneity and magnitude size. To do this, two N42 Block PMs are used and the iron core is designed and optimized in accordance with the dimensions of PM pieces using ANSYS Maxwell software. Then, all iron parts are lathed, the yoke pieces and pole spacers are welded. In addition, PM and pole pieces are installed. Finally, measurement is done by Lutron to evaluate the static coil performance.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Inductively-overcoupled coil design for high resolution magnetic resonance imaging

BACKGROUND Maintaining the quality of magnetic resonance images acquired with the current implantable coil technology is challenging in longitudinal studies. To overcome this challenge, the principle of 'inductive overcoupling' is introduced as a method to tune and match a dual coil system. This system consists of an imaging coil built with fixed electrical elements and a matching coil equipped...

full text

Theory of Gradient Coil Design Methods for Magnetic Resonance Imaging

The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. In simple terms, an magnetic resonance imaging (MRI) system consists of five major components: a magnet, gradient systems, an RF coil system, a receiver, and a computer system. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved ...

full text

3-D RF Coil Design Considerations for MRI

High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...

full text

Software Tools for the Analysis of Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 3

pages  393- 399

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023